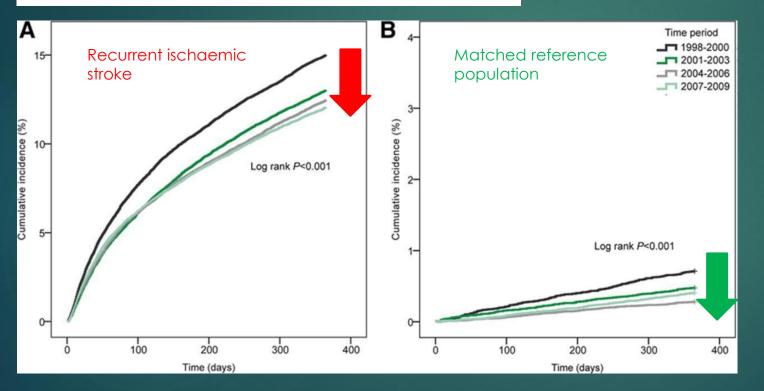


How can l improve my nutrition after stroke?

DR JOSEPH KWAN CONSULTANT IN STROKE MEDICINE IMPERIAL COLLEGE LONDON, UK EUROPEAN LIFE AFTER STROKE FORUM 10 MARCH 2023 Stroke Volume 48, Issue 8, August 2017; Pages 2046-2051 https://doi.org/10.1161/STROKEAHA.117.016815



ORIGINAL CONTRIBUTIONS

One-Year Incidence, Time Trends, and Predictors of Recurrent Ischemic Stroke in Sweden From 1998 to 2010 An Observational Study

Lisa Bergström, MD, Anna-Lotta Irewall, MD, PhD, Lars Söderström, MSc, Joachim Ögren, MD, Katarina Laurell, PhD, and Thomas Mooe, PhD

10-15% recurrence of ischemic stroke at 1 year

Risk of recurrent ischaemic stroke <u>decreased</u> from 1998 to 2010.

CV risk factors = <u>higher</u> risk of recurrence

Secondary preventive drugs = <u>reduced</u> risk of recurrence

Bergstrom et al, 2017 www.ahajournals.org/doi/10.1161/STROKEAHA.117.016815

INTERSTROKE study: 13 447 cases of acute first stroke vs. 13 472 age- vs. sex-matched controls without stroke

<u>Diet quality = 1 of 10 modifiable risk factors for ALL strokes</u>

	Prevalen controls		stroke	OR (99% CI)	PAR, % (99% CI)	Ischa	emic stroke	OR (99% CI)	PAR, % (99% CI)	Intracerebra haemorrhag		PAR, % (99% CI)
Self-reported history of hypertension Self-reported history of hypertension	35.4		-	2·56 (2·33 to 2·80)	34·4 (32·0 to 36·9)		•	2·34 (2·10 to 2·60)	32·0 (29·1 to 35·1)		 - 3.71 (3.19 to 4.31) 	42·8 (38·9 to 46·8)
or blood pressure ≥140/90 mm Hg	47.4			■ 2·98 (2·72 to 3·28)	47·9 (45·1 to 50·6)		-	2·78 (2·50 to 3·10)	45·7 (42·4 to 49·0)		➡ 4·09 (3·51 to 4·77)	56·4 (52·0 to 60·6)
Current smoking	22.4		-	1.67 (1.49 to 1.87)	12·4 (10·2 to 14·9)		+	1.93 (1.69 to 2.21)	15·1 (12·8 to 17·8)		1.14 (0.95 to 1.36)	3.6 (0.9 to 13.0)
Waist-to-hip ratio				, ,	, ,			· ,	, ,		, ,	· · ·
T2 vs T1	34.1		+	1·24 (1·11 to 1·39)			-	1·31 (1·14 to 1·49)		-	1·16 (0·98 to 1·38)	
T3 vs T1	32.9		+	1.44 (1.27 to 1.64)	18·6 (13·3 to 25·3)		+		20·4 (14·3 to 28·2)			13·1 (6·4 to 25·1)
Diet (mAHEl score)				· · · · · · · · · · · · · · · · · · ·								
T2 vs T1	34.0	-		0·77 (0·69 to 0·86)		-		0·75 (0·66 to 0·85)		-	0·80 (0·68 to 0·94)	
T3 vs T1	33.0	•		0.60 (0.53 to 0.67)	23·2 (18·2 to 28·9)	-		0.59 (0.52 to 0.68)	22·4 (17·0 to 29·0)	-	0.61 (0.50 to 0.74)	24·5 (16·5 to 34·8)
Regular physical activity	16.3	+		0.60 (0.52 to 0.70)	35·8 (27·7 to 44·7)	+		0.63 (0.53 to 0.74)	33·4 (24·2 to 44·0)	-=-	0.63 (0.48 to 0.81)	34.6 (21.3 to 50.7)
Self-reported history of diabetes or	22.0		-	1.16 (1.05 to 1.30)	3.9 (1.9 to 7.6)		-	1.33 (1.18 to 1.50)	7.5 (5.0 to 11.1)	-	0.72 (0.60 to 0.87)	-7.0 (-11 to -3.0)
HbA _{1c} ≥6·5% Alcohol										_		
Low or moderate	25.2		_	1·14 (1·01 to 1·28)			_	1.07 (0.93 to 1.23)			1.43 (1.17 to 1.74)	
High or heavy episodic	2.5			2.09 (1.64 to 2.67)	5·8 (3·4 to 9·7)			2·14 (1·62 to 2·82)	4.6 (2.0 to 10.0)			9·8 (6·4 to 14·8)
Psychosocial factors	2)			2·20 (1·78 to 2·72)	17·4 (13·1 to 22·6)		_	1.98 (1.56 to 2.52)	15·1 (10·3 to 21·5)	-		24·7 (18·1 to 32·8)
Cardiac causes	5.0			■ 3.17 (2.68 to 3.75)	9·1 (8·0 to 10·2)			► 3.49 (2.91 to 4.18)		_ _	• 1.58 (1.09 to 2.28)	
ApoB/ApoA1 ratio	50			- 517(20000575)	91(0010102)		-	5 4 5 (2 51 (0 4 10)	114(10110120)	-	1 90 (1 0 9 10 2 20)	14(0000)4/
T2 vs T1	34.0		-	1·28 (1·14 to 1·42)			-	1.41 (1.24 to 1.60)			0·94 (0·79 to 1·11)	
T3 vs T1	33.0		- <u>-</u>	1.84 (1.65 to 2.06)	26·8 (22·2 to 31·9)			2·19 (1·92 to 2·49)	34·0 (29·0 to 39·3)	7	1.10 (0.92 to 1.31)	1·2 (0·0 to 98·3)
Composite PAR*			-	104(10)(02:00)	90.7 (88.7 to 92.4)		-	2 19 (192 (0 2 49)	91·5 (89·4 to 93·2)	Γ	1 10 (0 52 10 1.91)	87·1 (82·2 to 90·8)
	0.1	I I 0·2 0·5 1	0 2.0	5·0 10·0	0.1	0·2 0·5 1	.0 2.0	5.0 10.0	0.1 0.2	2 0·5 1·0 2	·0 5·0 10·0	
		OR (9	9% CI)			OR (9	9% CI)			OR (99% CI)		

Modified Alternative Healthy Eating Index (AHEI) = based on daily servings of fruits, vegetables, nuts and soy protein, fish, meat, eggs, whole grain, and fried foods.

O/Donnell et al 2016. Lancet 388(10046), 761–775. https://doi.org/10.1016/S0140-6736(16)30506-2

Global burden of stroke and risk factors in 188 countries, during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013

Valery L Feigin, Gregory A Roth, Mohsen Naghavi, Priya Parmar, Rita Krishnamurthi, Sumeet Chugh, George A Mensah, Bo Norrving, Ivy Shiue, Marie Ng, Kara Estep, Kelly Cercy, Christopher J L Murray, Mohammad H Forouzanfar, for the Global Burden of Diseases, Injuries, and Risk Factors Study 2013 and Stroke Experts Writing Group* DALY = disabilityadjusted life years

	DALY (millions)	%
All stroke	113	100
All risk factors	102	91
5 top nutritional factors:		
1. Low in fruits <200g/d	40	36
2. High in sodium >5g/d	25	23
3. Low in vegetables <350g/d	23	20
4. Low in whole grain <100g/d	17	15
5. High in sugary beverages >63g/d	0.32	0.3

Feigin et al 2016. Lancet. Neurology, 15(9), 913–924. https://doi.org/10.1016/S1474-4422(16)30073-4

HEART & STROKE FOUN		DDCD			Submit Feedback Additio	nal Resour
Canadian Partn for Stroke Reco	very E	BRSR.com			Search this site	م
Home	Evidence Reviews	Clinician's Handbook	Educational Mod	ules Appendices	Contact Us	
Evidence Reviews		<u>Ice Review</u> » Nutritional Interventions F	2	j Stroke		
 Introduction and Methods Clinical Consequences of Stroke Background Concepts in Stroke Rehabilitation 	malnutrition in management effective meti	atus following stroke can have a n nclude a greater incidence of infer t requires effective methods of ass hods of administering nutrients via post stroke is evaluated and marke	tions and pressure sore essment, an understand feeding techniques and	es, and longer lengths of hospi ding of the underlying causes (d supplementation. In this revie	tal stays. Clinical nutritional of nutritional deficiencies, ar ew, the prevalence of	nd
 Managing the Stroke Rehabilitation Triage Process The Efficacy of Stroke Rehabilitation 		ficiencies is provided, including m oral supplementation, as well as tr			irments. Interventions of en	teral
6. The Elements of Stroke Rehabilitation		EBRSR Ganadian Partnersh for Strake Recovery		malnutrition, nutritional r catabolism, gastrointest	narkers, hypermetabolism, incre inal function, enteral feeding, ora agia, parenteral nutrition, feeding	al
Clinician's Handbook		Chapter 16: Nutritional reha	bilitation		erome Iruthayarajah MSc, Norin ardson MSc, Hillel Finestone ME	
Educational Modules		Abstract Nutritional tabus following stroke can have a negative impact on mortality. Complications secolided with maintaining include ag provide the stroke of the second stroke of the stroke of the nutritional deficiencies, and effective methods of administering of nutritional deficiencies of effective methods of administering matching used to identify deficiencies are discussed. A summarize infiliand affectives is provided, including methods of administering impactments, Interventions of esteal feeding and onal supplement for dynamical.	safer incidence of infedions nutritional management e underlying causes of trients via facefing inciding from the vialuated of the service from of potential causes of in Intake, and gastrointestinal			

Chapter 16: Nutritional rehabilitation Table of contents Key Points	3
Modified Sackett Scale	4
New to the 19 th edition of the Evidence-based Review of Stroke	
Rehabilitation	5
Outcome Measure Definitions	7
Lipid Consumption Protein Consumption Carbohydrate Consumption Calorie Consumption Vitamins and Mineral Consumption Body Composition Blood Glucose Management Plasma Proteins Blood Pressure Lymphocyte Count Activities of Daily Living Stroke Severity Assessment of Nutritional Status Following Stroke	
Prevalence of Malnutrition Following Stroke Factors Associated With the Development of Malnutrition	16 22
Metabolic Rate Following Stroke Gastrointestinal Impairments Following Stroke Nutrient Intake Following Stroke Nutritional rehabilitation interventions	23 24
Glucose Regulation Lipid Regulation Vitamin D Supplementation Oral Nutritional Supplementation References	30 32 35

www.ebrsr.com/evidence-review/16-nutritional-interventions-following-stroke

Circulation

Volume 144, Issue 23, 7 December 2021; Pages e472-e487 https://doi.org/10.1161/CIR.00000000001031

AHA SCIENTIFIC STATEMENT

2021 Dietary Guidance to Improve Cardiovascular Health: A Scientific Statement From the American Heart Association

EMPHASIZE

- Fruits and vegetables
- Whole grain foods
- Healthy sources of proteins; fish and seafood, legumes and nuts, low-fat/fat-free dairy, poultry and if desired lean meat
- Liquid plant oils (eg, soybean oil and canola oil)

MINIMIZE

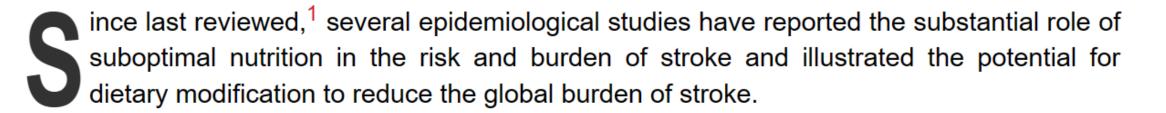
• Beverages and foods with added sugars

2

- Ultra-processed foods
- Processed meats
- Food high in salt
- Alcoholic beverages
- Tropic oils
- · Adjust energy intake to achieve and maintain a healthy body weight
- · Follow this guidance regardless of where food is prepared or consumed

www.ahajournals.org/doi/10.1161/CIR.0000000000001031

Stroke Volume 48, Issue 11, November 2017; Pages 3168-3174 https://doi.org/10.1161/STROKEAHA.117.016993



TOPICAL REVIEWS

The Role of Nutrition in the Risk and Burden of Stroke

An Update of the Evidence

Graeme J. Hankey, MD, FRACP

Dietary pattern recommendations

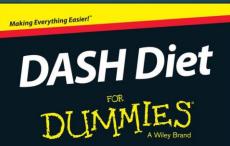
DASH diet = Dietary Approaches to Stop Hypertension
 www.dashdiet.org

Mediterranean diet

DASH Diet

Low in

- Saturated fat
- Sodium


DASH Eating Plan

The Benefits: Lowers blood pressure & LDL "bad" cholesterol.

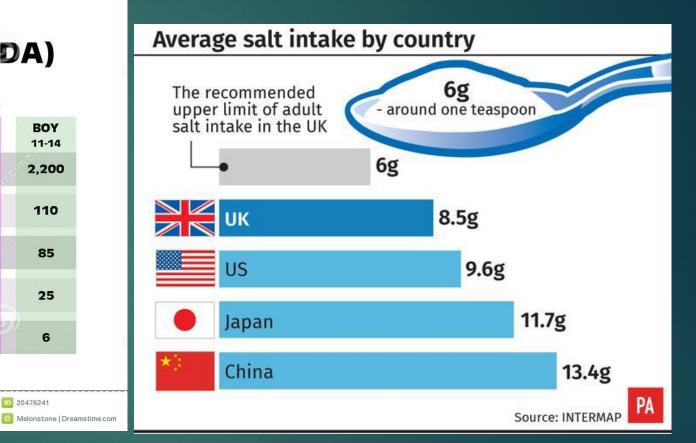
www.nhlbi.nih.gov/DASH

Sarah Samaan, MD, FACC Board Certified, Cardiology, Internal Medicine Rosanne Rust, RDN, LDN Cindy Kleckner, RDN, LD, FAND

NUTRITION GUIDELINE DAILY AMOUNT (GDA)

	MEN	WOMEN	CHILDREN			
			CHILD aged 5-10	GIRL 11-14	BOY 11-14	
CALORIES	2,500	2,000	1,800	1,850	2,200	
SUGAR (g)	120	90	85	90	110	
FAT (g)	95	70	70	70	85	
SATURATED FAT (g)	30	20	20	25	25	
SALT (g)	G	5 5100°	4	6	6	

How much is too much salt?



EURODIET (2001) Nutrition & Diet for Healthy Lifestyles in Europe

NUTRITION GUIDELINE DAILY AMOUNT (GDA)

	MEN	WOMEN	CHILDREN			
			CHILD aged 5-10	GIRL 11-14	BOY 11-14	
CALORIES	2,500	2,000	1,800	1,850	2,200	
SUGAR (g)	120	90	85	90	110	
FAT (g)	95	70	70	70	85	
SATURATED FAT (g)	30	20	20	25	25	
SALT (g)	6	5	4	6	9	

Download from Dreamstime.com This watermarked comp image is for previewing purposes only

EURODIET (2001) Nutrition & Diet for Healthy Lifestyles in Europe

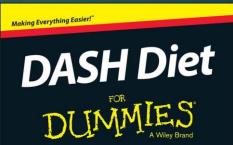
DASH Diet

Low in

- Saturated fat
- Sodium

<u>Rich in</u>

- Potassium
- Calcium
- Magnesium
- fiber
- Protein


DASH Eating Plan

The Benefits: Lowers blood pressure & LDL "bad" cholesterol.

www.nhlbi.nih.gov/DASH

Cindy Kleckner, RDN, LD, FAND

Page 1 of 19

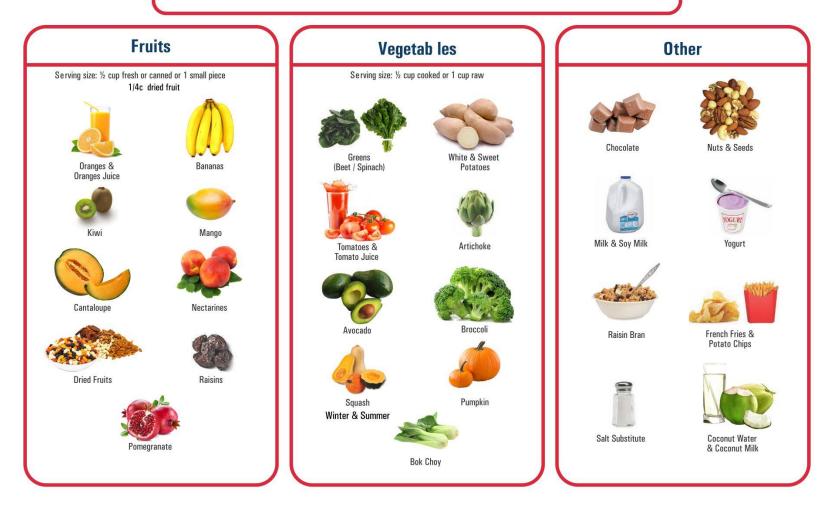
Internal use

RESEARCH

Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses

OPEN ACCESS

Nancy J Aburto scientist¹, Sara Hanson intern¹, Hialy Gutierrez independent consultant², Lee Hooper senior lecturer in research synthesis and nutrition³, Paul Elliott professor⁴, Francesco P Cappuccio Cephalon professor of cardiovascular medicine & epidemiology⁵



Study	Log risk ratio (SE)	Risk ratio (inverse variance,	Weight (%)	Risk ratio (inverse variance
Cardiovascular disea	se	random) (95% CI)		random) (95% CI)
Cook 2009	-0.44 (0.25)		13.70	0.64 (0.39 to 1.05
Geleijnse 2007	0.21 (0.15)		23.40	1.23 (0.92 to 1.66
O'Donnel 2011	-0.08 (0.07)	-+-	34.10	0.92 (0.80 to 1.06
Umesawa 2008	-0.31 (0.11)		28.80	0.73 (0.59 to 0.91
Subtotal		-	100.00	0.88 (0.70 to 1.10
Test for heterogeneity	/: τ ² =0.03,			
χ ² =9.78, df=3, P=0.	02, l ² =69%			
Test for overall effect	z=1.11, P=0.27			
Stroke				
Ascherio 1998	-0.37 (0.22)		7.50	0.69 (0.45 to 1.06
Bazzano 2001	-0.27 (0.12)		13.70	0.76 (0.60 to 0.97
Geleijnse 2007	0.16 (0.16)		- 10.80	1.17 (0.86 to 1.61
Iso 1999	-0.13 (0.21)		8.00	0.88 (0.58 to 1.33
Khaw CCDS1987	-0.51 (0.16)		10.80	0.60 (0.44 to 0.82
Larsson 2008	-0.14 (0.06)		18.50	0.87 (0.77 to 0.98
O'Donnel 2011	-0.56 (0.14)		12.10	0.57 (0.43 to 0.75
Umesawa 2008	-0.19 (0.16)		10.80	0.83 (0.60 to 1.13
Weng 2008	-0.52 (0.21)	+	8.00	0.59 (0.39 to 0.90
Subtotal		-	100.00	0.76 (0.66 to 0.89
lest for heterogeneity	/: τ ² =0.03,			
χ ² =19.49, df=8, P=0	0.01, I ² =59%			
lest for overall effect	z=3.57, P(0.001			
Coronary heart disea	se			
Bazzano 2001	-0.03 (0.1)		48.20	0.97 (0.80 to 1.18
Geleijnse 2007	0.1 (0.13)		37.50	1.11 (0.86 to 1.43
Umesawa 2008	-0.43 (0.26)	· · · · · · · · · · · · · · · · · · ·	14.30	0.65 (0.39 to 1.08
Subtotal		-	100.00	0.96 (0.78 to 1.19
Test for heterogeneity	y: τ ² =0.01,			
χ ² =3.35, df=2, P=0.	19.1'=40%	0.5 0.7 1 1.		
Test for overall effect:	-0.2E D-0.73		rs lower tassium	

Lower K+ intake associated with higher blood pressure / stroke Higher K+ intake may be protective against these conditions = RRR by 24% for stroke

https://doi.org/10.1136/bmj.f1378

HIGH POTASSIUM FOOD

Following the DASH Eating Plan

Use this chart to help you plan your menus-or take it with you when you go to the store.

Food Group	Ser	vings Per	Day	Serving Sizes	Examples and Notes	Significance of Each
	1,600 Calories	2,000 Calories	2,600 Calories			Food Group to the DASH Eating Plan
Grains*	6	6–8	10–11	1 slice bread 1 oz dry cereal [†] ¹ /2 cup cooked rice, pasta, or cereal	Whole wheat bread and rolls, whole wheat pasta, English muffin, pita bread, bagel, cereals, grits, oatmeal, brown rice, unsalted pretzels and popcorn	Major sources of energy and fiber
Vegetables	3–4	4–5	5–6	1 cup raw leafy vegetable ¹ / ₂ cup cut-up raw or cooked vegetable ¹ / ₂ cup vegetable juice	Broccoli, carrots, collards, green beans, green peas, kale, lima beans, potatoes, spinach, squash, sweet potatoes, tomatoes	Rich sources of potassium, magnesium, and fiber
Fruits	4	4–5	5–6	1 medium fruit 1/4 cup dried fruit 1/2 cup fresh, frozen, or canned fruit 1/2 cup fruit juice	Apples, apricots, bananas, dates, grapes, oranges, grapefruit, grapefruit juice, mangoes, melons, peaches, pineapples, raisins, strawberries, tangerines	Important sources of potassium, magnesium, and fiber
Fat-free or low-fat milk and milk products	2–3	2–3	3	1 cup milk or yogurt 11⁄2 oz cheese	Fat-free (skim) or low-fat (1%) milk or buttermilk; fat-free, low-fat, or reduced-fat cheese; fat-free or low-fat regular or frozen yogurt	Major sources of calcium and protein
Lean meats, poultry, and fish	3–6	6 or less	6	1 oz cooked meats, poultry, or fish 1 egg‡	Select only lean; trim away visible fats; broil, roast, or poach; remove skin from poultry	Rich sources of protein and magnesium
Nuts, seeds, and legumes	3 per week	4–5 per week	1	1/3 cup or 11/2 oz nuts 2 Tbsp peanut butter 2 Tbsp or 1/2 oz seeds	Almonds, hazelnuts, mixed nuts, peanuts, walnuts, sunflower seeds, peanut butter, kidney beans, lentils, split peas	Rich sources of energy, magnesium, protein, and fiber

"Heart disease is one third of USA, barely any cancer on the island....

The basic foods for the modern Cretan diet are probably the same as during the Minoan period ~ 2000 B.C."

~ Leland Allbaugh 1950

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812 APRIL 4, 2013

Primary Prevention of Cardiovascular Disease with a Mediterranean Diet

Ramón Estruch, M.D., Ph.D., Emilio Ros, M.D., Ph.D., Jordi Salas-Salvadó, M.D., Ph.D., Maria-Isabel Covas, D.Pharm., Ph.D., Dolores Corella, D.Pharm., Ph.D., Fernando Arós, M.D., Ph.D., Enrique Gómez-Gracia, M.D., Ph.D., Valentina Ruiz-Gutiérrez, Ph.D., Miquel Fiol, M.D., Ph.D., José Lapetra, M.D., Ph.D., Rosa Maria Lamuela-Raventos, D.Pharm., Ph.D., Lluís Serra-Majem, M.D., Ph.D., Xavier Pintó, M.D., Ph.D., Josep Basora, M.D., Ph.D., Miguel Angel Muñoz, M.D., Ph.D., José V. Sorlí, M.D., Ph.D., José Alfredo Martínez, D.Pharm, M.D., Ph.D., and Miguel Angel Martínez-González, M.D., Ph.D., for the PREDIMED Study Investigators*

ABSTRACT

BACKGROUND

Observational cohort studies and a secondary prevention trial have shown an inverse association between adherence to the Mediterranean diet and cardiovascular risk. We conducted a randomized trial of this diet pattern for the primary prevention of cardiovascular events.

METHODS

In a multicenter trial in Spain, we randomly assigned participants who were at high cardiovascular risk, but with no cardiovascular disease at enrollment, to one of three diets: a Mediterranean diet supplemented with extra-virgin olive oil, a Mediterranean diet supplemented with mixed nuts, or a control diet (advice to reduce dietary fat). Participants received quarterly individual and group educational sessions and, depending on group assignment, free provision of extra-virgin olive oil, mixed nuts, or small nonfood gifts. The primary end point was the rate of major cardiovascular events (myocardial infarction, stroke, or death from cardiovascular causes). On the basis of the results of an interim analysis, the trial was stopped after a median follow-up of 4.8 years.

RESULTS

A total of 7447 persons were enrolled (age range, 55 to 80 years); 57% were women. The two Mediterranean-diet groups had good adherence to the intervention, according to self-reported intake and biomarker analyses. A primary end-point event occurred in 288 participants. The multivariable-adjusted hazard ratios were 0.70 (95% confidence interval [CI], 0.54 to 0.92) and 0.72 (95% CI, 0.54 to 0.96) for the group assigned to a Mediterranean diet with extra-virgin olive oil (96 events) and the group assigned to a Mediterranean diet with nuts (83 events), respectively, versus the control group (109 events). No diet-related adverse effects were reported.

CONCLUSIONS

Among persons at high cardiovascular risk, a Mediterranean diet supplemented with extra-virgin olive oil or nuts reduced the incidence of major cardiovascular events. (Funded by the Spanish government's Instituto de Salud Carlos III and others; Controlled-Trials.com number, ISRCTN35739639.)

N ENGLJ MED 368;14 NEJM.ORG APRIL 4, 2013

The New England Journal of Medicine Downloaded from nejm.org on May 13, 2013. For personal use only. No other uses without permission. Copyright © 2013 Massachusetts Medical Society. All rights reserved.

Appendix. Address reprint requests to Dr. Estruch at the Department of Internal Medicine, Hospital Clinic, Villaroel 120, 08036 Barcelona, Spain, or at restruch@ clinic.ub.es, or to Dr. Martinez-González at the Department of Preventive Medicine and Public Health, Facultad de Meddicina-Clinica Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain, or at mamartinez@unayes.

VOL. 368 NO. 14

*The PREDIMED (Prevención con Dieta Mediterránea) study investigators are listed in the Supplementary Appendix, available at NEJM.org.

Drs. Estruch and Martínez-González contributed equally to this article.

This article was published on February 25, 2013, at NEJM.org.

2013, at NEJM.org. N Engl J Med 2013;368:1279-90. DOI: 10.1056/NEJMoa1200303 Copyright © 2013 Massachusetts Medical Society. <u>MEDITERRANEAN DIE</u>

Internal use

 PERIMED study recruited 7447 participants free of CVD at baseline (but at high risk for CVD) and randomized 1:1:1 to 3 groups

1. Caloric-unrestricted Med Diet group receiving ~1L per week of extra-virgin olive oil (EVOO)

2. Caloric-unrestricted Med Diet groups receiving 30g of mixed nuts per day

- 3. <u>Control group</u> followed a low-fat diet (AHA 2000)
- Primary outcome = acute myocardial infarction, stroke, or death from CV causes

N Engl J Med. 2018 Jun 21;378(25):e34. PMID: 23432189

1279

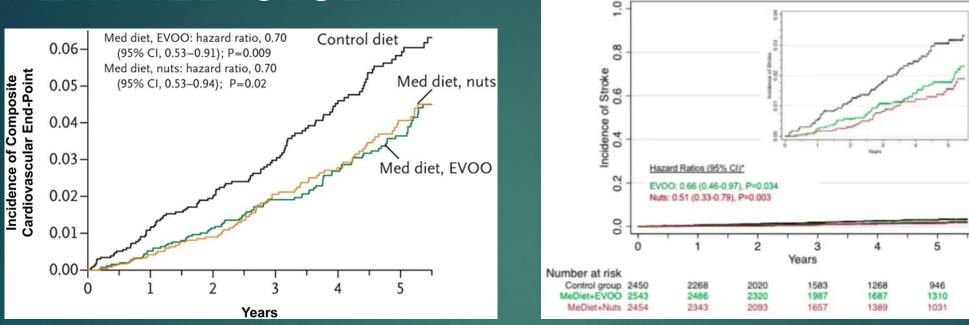
PERIMED STUDY

Mediterranean diet

Recommended	
Olive oil*	≥4 tbsp/day
Tree nuts and peanuts†	≥3 servings/wk
Fresh fruits	≥3 servings/day
Vegetables	≥2 servings/day
Fish (especially fatty fish), seafood	≥3 servings/wk
Legumes	≥3 servings/wk
Sofrito;	≥2 servings/wk
White meat	Instead of red meat
Wine with meals (optionally, only for habitual drinkers)	≥7 glasses/wk
Discouraged	
Soda drinks	<1 drink/day
Commercial bakery goods, sweets, and pastries§	<3 servings/wk
Spread fats	<1 serving/day
Red and processed meats	<1 serving/day

Low-fat diet (control)	
Recommended	
Low-fat dairy products	≥3 servings/day
Bread, potatoes, pasta, rice	≥3 servings/day
Fresh fruits	≥3 servings/day
Vegetables	≥2 servings/wk
Lean fish and seafood	≥3 servings/wk
Discouraged	
Vegetable oils (including olive oil)	≤2 tbsp/day
Commercial bakery goods, sweets, and pastries§	≤l serving/wk
Nuts and fried snacks	≤1 serving /wk
Red and processed fatty meats	≤1 serving/wk
Visible fat in meats and soups¶	Always remove
Fatty fish, seafood canned in oil	≤l serving/wk
Spread fats	≤l serving/wk
Sofrito‡	≤2 servings/wk

Processed and red meat was <u>restricted</u> in both groups


Diets

- A) American Heart Association diet (version from year 2000) without any free delivery of food items
- B) Mediterranean Diet (Med Diet) with free extra virgin olive oil (minimum use per day is 4 teaspoons)
- C) Mediterranean Diet with free nut mix , 30 g/day (walnuts 15 g, almonds 7,5 g & hazelnuts 7.5 g)
- Diet were constructed and patients informed by study dietitians

N Engl J Med. 2018 Jun 21;378(25):e34. PMID: 23432189

B) Stroke

PERIMED STUDY

- RCT terminated early due to divergence for the primary outcome between 3 groups at median follow-up of 4.8 years
- Results: 30% RR reduction in primary outcome for both Med Diet groups vs. low-fat control diet group
- <u>49% RR reduction of stroke for MD + nuts group and 36% for MD + EVOO group</u>

N Engl J Med. 2018 Jun 21;378(25):e34. PMID: 23432189

Effects of the Mediterranean Diet on Cardiovascular Outcomes—A Systematic Review and Meta-Analysis

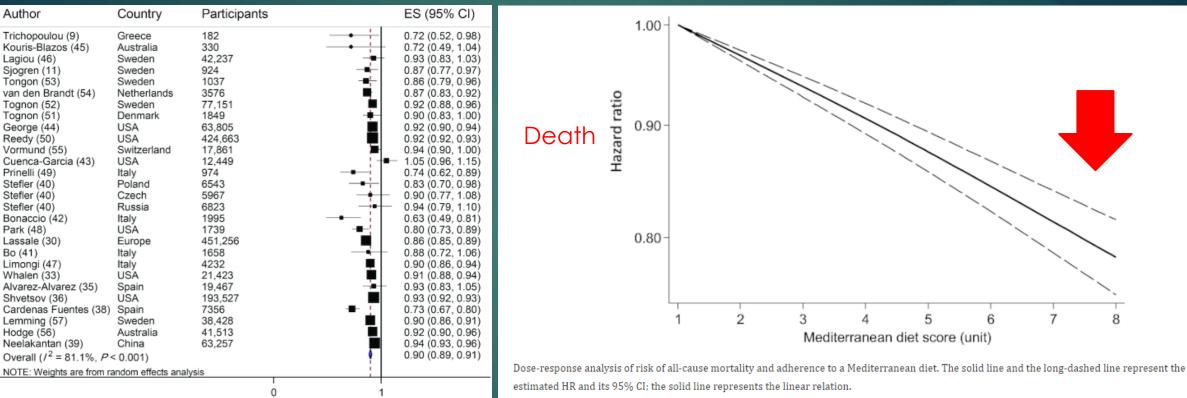
Thaminda Liyanage^{1,2}, Toshiharu Ninomiya¹*, Amanda Wang¹, Bruce Neal¹, Min Jun^{1,3}, Muh Geot Wong^{1,2}, Meg Jardine^{1,4}, Graham S. Hillis¹, Vlado Perkovic¹

- Meta-analysis of 3 RCTs comparing the Mediterranean to control diets in a total of 9052 participants
- Mediterranean diet protects against stroke (1.55% diet versus 2.37% control
- Risk ratio = 0.65 (95% Cl, 0.48– 0.88; P=0.005)

USE First author (year)			RR (95%CI) Fixed effect	Treatment n/N	Control n/N	Weight %
MACE						
Estruch et at (2013)		_ 	0.81 (0.64, 1.02)	179/4997	109/2450	52.6
de Lorgeril et al (1994) Sing et al (2002)	•	_ _	0.22 (0.11, 0.47) 0.51 (0.37, 0.71)	8/302 49/499	36/303 96/501	12.9 34.5
All trials, p<0.001	-	•	0.63 (0.53, 0.75)	236/5798	241/3254	100.0
			0.00 (0.55.0.00)	187/5299	44510750	100.0
Best summary estimate o≺0.001		- -	0.69 (0.55,0.86)	187/5299	145/2753	100.0
CVD mortality						
Estruch et at (2013)		•	0.93 (0.60, 1.45)	57/4997	30/2450	25.0
Burr et al (2003) de Lorgeril et al (1994)	←	+•	1.22 (0.90, 1.65) 0.19 (0.06, 0.64)	86/807 3/302	67/764 16/303	42.8 9.9
Sing et al (2002)	· · _	- -	0.56 (0.33, 0.95)	20/499	36/501	22.3
All trials, p=0.32		-	0.90 (0.72, 1.11)	166/6605	149/4018	100.0
Best summary estimate p=0.95		+	0.99 (0.78, 1.26)	146/6106	113/3517	100.0
Coronary events						
Estruch et at (2013) de Lorgeril et al (1994)	_	•	0.88 (0.59, 1.30) 0.30 (0.11, 0.79)	68/4997 5/302	38/2450 17/303	39.9 13.3
Sing et al (2002)	• -	→	0.55 (0.37, 0.83)	33/499	60/501	46.8
All trials, p=0.002			0.65 (0.50, 0.85)	106/5798	115/3254	100.0
3est summary estimate ⊳=0.09		-	0.73 (0.51, 1.05)	73/5299	55/2753	100.0
<u>Stroke</u>						
Estruch et at (2013)			0.68 (0.49, 0.96)	81/4997	58/2450	80.0
de Lorgeril et al (1994) Sing et al (2002)	· -	- -	0.14 (0.01, 2.76) 0.56 (0.25, 1.27)	0/302 9/499	3/303 16/501	3.6 16.4
All trials, p=0.005			0.65 (0.48, 0.88)	90/5798	77/3254	100.0
Best summary estimate P=0.01			0.66 (0.48, 0.92)	81/5299	61/2753	100.0
Heart failure						
de Lorgeril et al (1994)	$\leftarrow \bullet$		0.25 (0.05, 1.17)	2/302	8/303	18.6
Sing et al (2002)			0.32 (0.16, 0.61)	11/499	35/501	81.4
All trials, p <0.001		_	0.30 (0.17, 0.56)	13/801	43/804	100.00
Best summary estimate	←		0.25 (0.05, 1.17)	2/302	8/303	100.0
o=0.08						
All-cause mortality						
Estruch et at (2013)		+	1.01 (0.81, 1.25)	234/4997	114/2450	46.9
Burr et al (2003) de Lorgeril et al (1994)			1.23 (0.98, 1.55) 0.40 (0.18, 0.90)	142/807 8/302	109/764 20/303	34.4 6.1
Ng et al (2011) Sing et al (2002)	<◆ _	•	0.31 (0.03, 2.74) 0.63 (0.39, 1.04)	1/25 24/499	3/23 38/501	1.0 11.6
All trials, p=0.97			1.00 (0.86, 1.15)	409/6630	284/4041	100.00
		Ī			201/1011	100.00
Best summary estimate p=0.57		+	1.05 (0.90, 1.22)	385/6131	246/3540	100.00
	.1 .25	.5 1	2 4			
	Favours treatm	ient	Favours control			

Liyanage, T. PloS one, 11(8), e0159252. https://doi.org/10.1371/journal.pone.0159252

<u>Adv Nutr.</u> 2019 Nov; 10(6): 1029–1039. Published online 2019 May 21. doi: <u>10.1093/advances/nmz041</u>


Internal use

PMCID: PMC6855973 PMID: <u>31111871</u>

Adherence to the Mediterranean Diet in Relation to All-Cause Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies

Sepideh Soltani,¹ Ahmad Jayedi,² Sakineh Shab-Bidar,³ Nerea Becerra-Tomás,^{4,5} and Jordi Salas-Salvadó^{4,5}

- Included 29 prospective studies = >1.6M participants with >220K cases of all-cause mortality
- Pooled HR of all-cause mortality = 0.90 (95% CI: 0.89, 0.91) for each 2-point increase in adherence to the Mediterranean Diet

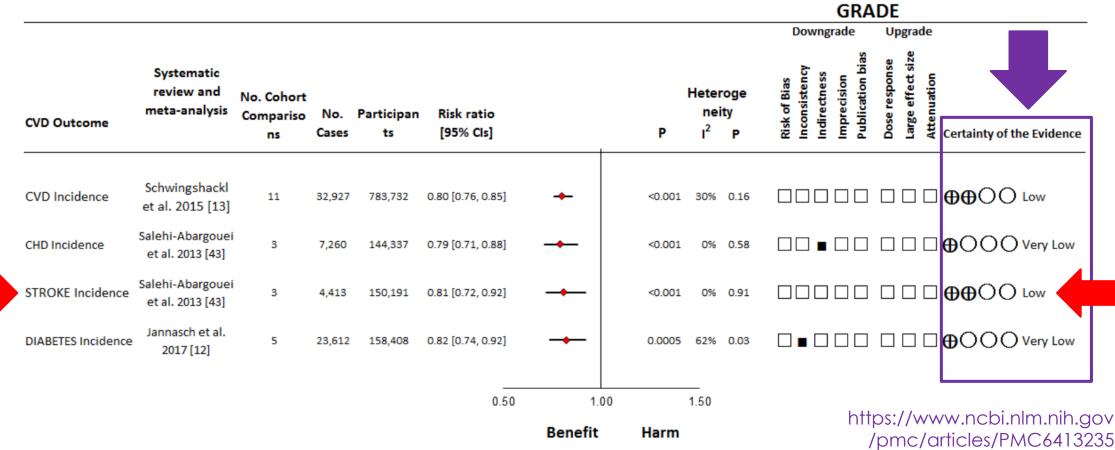
Meta-analyses of prospective cohort studies of <u>dietary patterns</u> and risk of stroke

Diet	Studies	Subjects	Events	Unit	RR	95% CI		
Beneficial								
Mediterranean diet ²⁴	5	159 995	2444	High vs low	0.76	0.60–0.96		
Mediterranean diet ²⁵	1	20 197	565	High vs low adherence	0.83	0.70–1.00		
Mediterranean diet ²⁶	1	32 921	1270 IS	High vs low adherence	0.78	0.65–0.93 IS		
			262 HS		0.88	0.61–1.29 HS		
DASH diet ²⁷	3	150 191	not stated	Highest vs lowest adherence	0.81	0.72–0.92		
Modified DASH diet ²⁸	1	74 404	3896 (IS)	Highest vs lowest quartile	0.86	0.78–0.94		
Modified DASH diet ²⁸	1	74 404	560 (ICH)	Highest vs lowest quartile	0.81	0.63–1.05		
Nordic diet ²⁹	1	55 338	2283	High vs low adherence	0.86	0.76–0.98		

<u>Mediterranean diet</u> = high intake of plant foods (fruit, vegetables, nuts, legumes), olive oil, and cereals; high ratio of monounsaturated to saturated fat; moderate intake of fish and poultry; low intake of dairy products, red meat, processed meats, and sweets; moderate wine consumption, with meals.

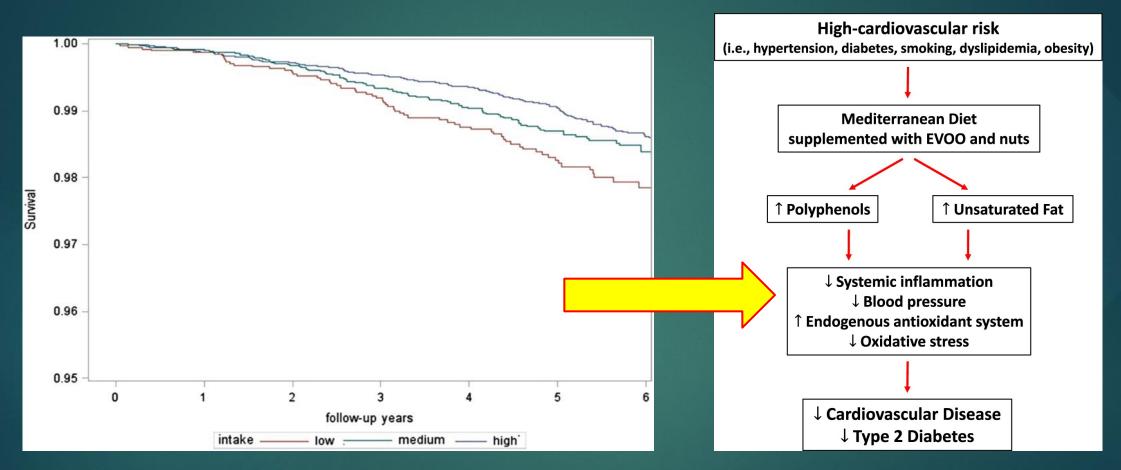
DASH diet = high intake of plant foods (fruit, vegetables, nuts, legumes); high intake of low-fat dairy products; low intake of sweets and sugar-containing beverages, red and processed meat, saturated fat, total fat, and cholesterol.

Nordic diet = high intake of fish, apples and pears, cabbages, root vegetables, rye bread, and oatmeal.

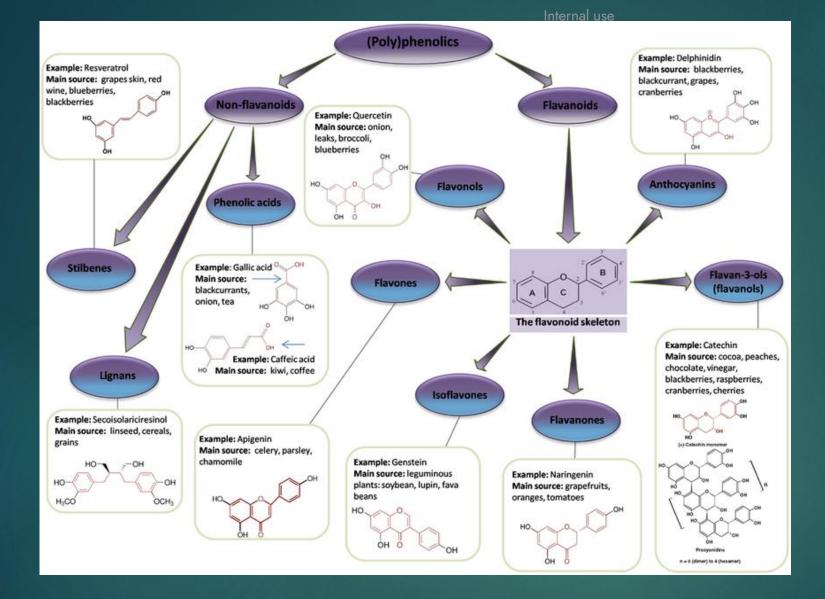


MDPI

Review


DASH Dietary Pattern and Cardiometabolic Outcomes: An Umbrella Review of Systematic Reviews and Meta-Analyses

Laura Chiavaroli ^{1,2}, Effie Viguiliouk ^{1,2}, Stephanie K Nishi ^{1,2}, Sonia Blanco Mejia ^{1,2}, Dario Rahelić ^{3,4}, Hana Kahleová ^{5,6}, Jordi Salas-Salvadó ^{7,8}, Cyril WC Kendall ^{1,2,9} and John L Sievenpiper ^{1,2,10,11,*}


7 of 28

Polyphenol consumption

<u>Highest</u> chance of survival for the <u>highest</u> level of polyphenol consumption, amongst PERIMED participants

N Engl J Med. 2018 Jun 21;378(25):e34. PMID: 23432189

Polyphenol rich foods:

- Berries
- Grapes
- Tomatoes
- Cherries
- Oranges / grapefruit
- Broccoli / onions
- Cocoa / chocolate
- Tea / coffee
- Red wine

POLYPHENOLS = antioxidant, anti-apoptosis, anti-aging, anticarcinogen, antiinflammation, anti-atherosclerosis, cardiovascular protection, improvement of the endothelial function, inhibition of angiogenesis and cell proliferation activity.

Meta-analyses of prospective cohort studies of <u>foods</u> and risk of stroke

Food	Studies	Subjects	Events	Unit	RR	95% C
Beneficial						
Chocolate ¹³	5	116 664	4260	Highest vs lowest category	0.79	0.70-0.8
Fruits ¹⁴	16	964 142	46 203	Per 200 g (2 servings)/d	0.82	0.74-0.9
Vegetables ¹⁴	13	441 670	14 973	Per 200 g (2 servings)/d	0.87	0.79-0.9
Fish ¹⁵	8	394 958	16 890	≥5 vs 1 serving/wk	0.88	0.81-0.9
1100042000				2-4 vs <1 serving/wk	0.94	0.90-0.9
Milk ¹⁶	14	603 920	25 269	per 200 g/d increment	0.93	0.88-0.9
				125 g/d milk intake	0.86	0.82-0.8
Eggs ¹⁷	7	308 000	8889	High (1 egg/d) vs low (<2/wk)	0.88	0.81-0.9
Tea ¹⁸	8	307 968	11 329	Each 1 serving/d (1 cup)	0.94	0.90-0.9
Coffee ¹⁹	17	1 283 685	12 030	Highest vs lowest category	0.95	0.84-1.0
				2nd highest vs lowest category	0.80	0.75-0.
				3rd highest vs lowest category	0.89	0.84-0.9
Neutral						
Whole grains ²⁰	6	245 012	2337	per 90 g/d (≤120–150 g/d)	0.88	0.75-1.0
Nuts ²¹	11	396 768	9272	per 28 g/d increment	0.93	0.83-1.
				High vs low	0.89	0.82-0.9
Cheese ¹⁶	8	282 439	9919	per 40 g/d	0.97	0.94-1.
Legumes ²²	6	254 628	6690	Each 4 servings/wk (400 g)	0.98	0.84-1.
Butter ¹⁶	3	173 853	5299	per 10 g/d increment	1.00	0.99–1.
Harmful						
Red meat processed ²³	17	2 079 236	21730	>50 g (1 serving)/d	1.14	1.05-1.
				>0 g/d	1.17	1.09-1.

Hankey G. The Lancet Neurology, 11(1), 66-81. https://doi.org/10.1016/S1474-4422(11)70265-4

Meta-analyses of prospective cohort studies of <u>nutrients</u> and risk of stroke

Nutrient	Studies	Subjects	Events	Unit	RR	95% CI		
Beneficial								
Dietary potassium ⁴	16	639 440	19 522	Highest vs lowest*	0.87	0.80– 0.94		
Omega-3 polyunsaturated fat ⁵	14	514 483	9065	High vs low	0.87	0.79– 0.95		
Total dietary fiber ⁶	8	277 537	9931	Per 7 g/d	0.93	0.88– 0.98		
Neutral								
Monounsaturated fat ⁷	10	314 511	5827	higher intake	0.86	0.74– 1.00		
Omega-3-plant sources ⁸	3	98 410	1300	high vs low	0.96	0.78– 1.17		
Calcium ⁹	10	371 495	10 408	highest vs lowest quintile	0.96 <mark>†</mark>	0.89– 1.04		
Saturated fat ¹⁰	12	339 <mark>0</mark> 90	6226	high vs low	1.02	0.90– 1.15		
Total transfat ¹⁰	3	190 284	1905	high vs low	1.07	0.88– 1.28		
Glycemic index ¹¹	7	225 205	3046	high vs low	1.10	0.99– 1.21		
Total carbohydrate ¹¹	4	170 348	1851	high vs low	1.12	0.93– 1.35		
Harmful								
Glycemic load ¹¹	6	222 308	2951	high vs low	1.19	1.05– 1.36		
Dietary sodium ¹²	10	72 878	not stated	higher intake vs low	1.24	1.08– 1.43		

Median potassium intake =100 mmol/d in the highest category vs. 50 mmol/d in the lowest one

Pooled RR lowest at 90 mmol = 3.5g/d of potassium daily intake (RR 0.78; 95% CI, 0.70–0.86)

Hankey G. The Lancet Neurology, 11(1), 66-81. https://doi.org/10.1016/S1474-4422(11)70265-4

Meta-analyses of <u>randomized controlled trials</u> of <u>dietary interventions</u> and risk of stroke

Intervention	RCTs	RR	95% CI					
Beneficial								
Diets								
Mediterranean ^{24,31}	3	0.65	0.48–0.88					
Supplements								
Folic acid ³²	22	0.89	0.84–0.96					
Neutral								
Nutrients								
Reduced saturated fat intake ³³	8	1.00	0.89–1.12					
Supplements								
Omega-3 PUFAs ^{34_36}	9	1.05	0.93–1.18					
Vitamin B6 ³⁷	12	0.93	0.85–1.01					
Vitamin B12 ³⁷	5	0.91	0.80–1.03					
Vitamin C ^{37,38}	4	0.98	0.88–1.09					
Vitamin D ³⁹	11	1.09	0.92-1.30					
Vitamin E ³⁷	12	1.00	0.93–1.09					
β carotene ³⁷	2	0.98	0.89–1.07					
Selenium ³⁷	1	1.09	0.68–1.72					

Hankey G. The Lancet Neurology, 11(1), 66–81. https://doi.org/10.1016/S1474-4422(11)70265-4

The most widely read and highly cited peer-reviewed neurology journal

Home Latest Articles Current Issue Past Issues Neurology Video Journal Club Residents & Fellows

May 09, 2017; 88 (19) ARTICLE

Meta-analysis of folic acid efficacy trials in stroke prevention Insight into effect modifiers

Min Zhao, Guangliang Wu, Youbao Li, Xiaobin Wang, Fan Fan Hou, Xiping Xu, Xianhui Qin, Yefeng Cai First published April 12, 2017, DOI: https://doi.org/10.1212/WNL.00000000003909

Objective: To examine the efficacy and effect modifiers of folic acid supplementation in the prevention of stroke in regions without folic acid fortification based on relevant, up-to-date published randomized trials.

Methods: Relative risk (RR) was used to measure the effect of folic acid supplementation on risk of stroke using a fixed effects model.

Findings: Overall, folic acid supplementation significantly reduced the stroke risk by 11% (22 trials, n = 82,723; RR 0.89, 95% confidence interval [CI] 0.84–0.96). The effect was greater in low folate regions (2 trials, n = 24,020; Asia, 0.78, 0.67–0.90) compared to high folate regions (7 trials, n = 14,655; America, 1.05, 0.90–1.23), and among patients without folic acid fortification (11 trials, n = 49,957; 0.85; 0.77–0.94) compared with those with folic acid fortification (7 trials, n = 14,655; 1.05, 0.90–1.23). In further stratified analyses among trials without folic acid fortification a larger beneficial effect was found in those trials that used a low dosage of folic acid (≤0.8 mg: 0.78, 0.69–0.88) or low baseline vitamin B_{12} levels (<384 pg/mL: 0.78, 0.68–0.89). In the corresponding comparison groups, the effect sizes were attenuated and insignificant (*p* for interaction <0.05 for both). Although the interaction tests were not significant, there might be a higher benefit in trials with a low dosage of vitamin B_{12} , a low prevalence of statin use, but a high prevalence of hypertension.

Conclusions: Folic acid supplementation could reduce the stroke risk in regions without folic acid fortification, particularly in trials using a relatively low dosage of folic acid and with low vitamin B_{12} levels.

Folic acid supplementation reduces stroke risk by 11% (RR 0.89)

American American Heart Stroke Association Association. life is why-

THE GOOD, THE BAD & THE UGLY

Monounsaturated & Polyunsaturated Fats

- Can lower bad cholesterol levels
- Can lower risk of heart disease & stroke
- · Can provide essential fats that your body needs but can't produce itself

SOURCE

Plant-based liquid oils, nuts, seeds and fatty fish

EXAMPLES

Avocados Oils (such as canola, olive, peanut, safflower and sesame)

> **Fatty Fish** Nuts & Seeds (such as flaxseed, (such as tuna, herring, lake trout, mackerel, sunflower seeds salmon and sardines) and walnuts)

Saturated Fats

- Can raise bad cholesterol levels
- Can raise good cholesterol levels
- Can increase risk of heart disease & stroke

SOURCE

Most saturated fats come from animal sources. including meat and dairy, and from tropical oils

EXAMPLES

Cheese such as coconut, palm (such as whole milk cheeses) kernel and palm oils)

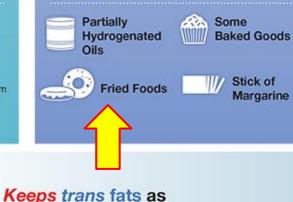
Butter

Tropical Oils

American Heart Association Recommendation

Eat a healthy dietary pattern that: Includes Limits saturated fats good fats

10.00


Hydrogenated Oils & Trans Fats

- Can raise bad cholesterol levels
- Can lower good cholesterol levels
- Can increase risk of heart disease & stroke
- · Can increase risk of type 2 diabetes

SOURCE

Processed foods made with partially hydrogenated oils

EXAMPLES

is found in many foods Chocolates & Wafers Shortening & Margarine Ice-crea

TRANS FAT

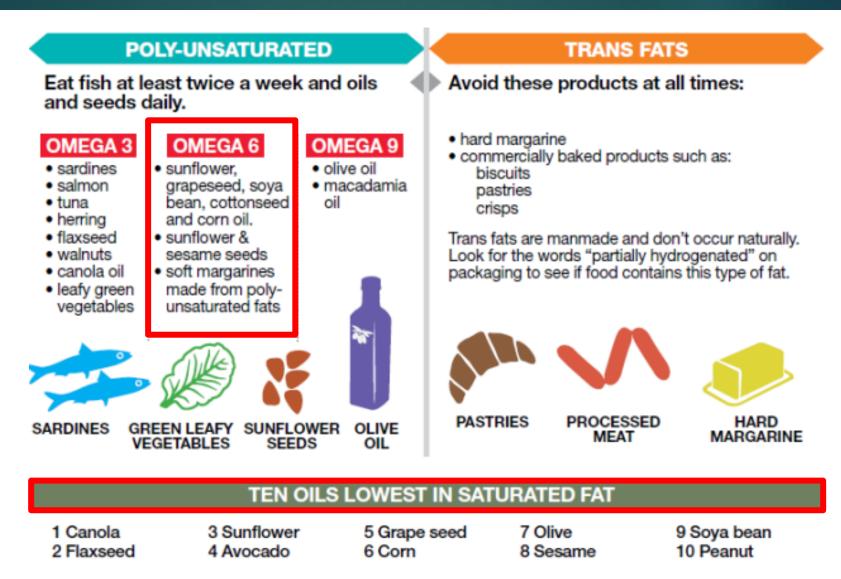
Biscuits & Cookies

Breakfast cereals

Burgers

Breads & Buns

Cakes


For more information, go to heart.org/fats

LOW as possible

TEN OILS LOWEST IN SATURATED FAT

1 Canola 2 Flaxseed 3 Sunflower 4 Avocado 5 Grape seed 6 Corn 7 Olive 8 Sesame 9 Soya bean 10 Peanut

SOURCES: ANNELIE SMITH CONSULTING DIETICIANS (021-531-8302); HEARTFOUNDATION.CO.ZA (086-014-3278); HEART.ORG.

SOURCES: ANNELIE SMITH CONSULTING DIETICIANS (021-531-8302); HEARTFOUNDATION.CO.ZA (086-014-3278); HEART.ORG.

Yuan et al. Nutrition Journal (2020) 19:70 https://doi.org/10.1186/s12937-020-00582-4

Nutrition Journal

RESEARCH

Check for

updates

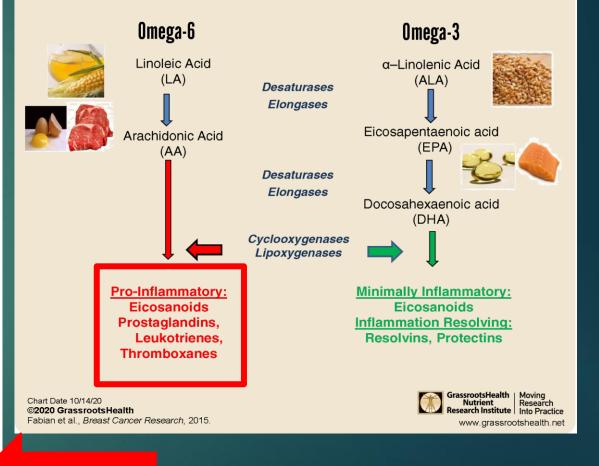
Open Access

Roles for circulating polyunsaturated fatty acids in ischemic stroke and modifiable factors: a Mendelian randomization study

Tonghui Yuan^{1,2}, Shucheng Si^{1,2}, Yunxia Li^{1,2}, Wenchao Li^{1,2}, Xiaolu Chen^{1,2}, Congcong Liu^{1,2}, Jiqing Li^{1,2}, Bojie Wang^{1,2}, Lei Hou^{1,2}, Yanxun Liu^{1,2*} and Fuzhong Xue^{1,2*}

Abstract

Background: Available data about the effects of circulating polyunsaturated fatty acids (PUFAs) on ischemic stroke (IS) and its main risk factors remains limited and conflicting. Therefore, we conducted Mendelian randomization (MR) to assess whether genetically predicted PUFA affected IS, lipids and blood pressure (BP).


Methods: Genetic instruments associated with IS were derived from ISGC Consortium (n = 29,633), with lipids were derived from GLGC(n = 188,577), with BP were derived from Neale Lab(n = 337,000). The inverse-variance weighted method was the main analysis to estimate the effect of exposure on outcome. Sensitivity analyses included principal components analysis, MR-Egger, weighted median, and weighted mode.

Results: Per SD increases in serum α-linolenic acid (ALA) were associated with lower IS risk, with odd ratio (OR) of 0.867(0.782,0.961), arachidonic acid (AA) were associated with higher IS risk (OR: 1.053(1.014,1.094)). Likewise, Per SD increases in ALA were associated with the lower-level low-density lipoprotein cholesterol(LDL-C), high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC) (β :-0.122(-0.144, -0.101), -0.159(-0.182, -0.135), -0.148(-0.171, -0.126), respectively), AA were associated with the higher-level of LDL-C, HDL-C and TC (β :0.045(0.034,0.056), 0.059(0.050,0.067), 0.055(0.046,0.063), respectively). Linoleic acid (LA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA) had little or no association with IS, lipids or BP at Bonferroni-corrected significance. Different analytic methods supported these findings. The intercept test of MR-Egger implied no pleiotropy.

Conclusions: High-level plasma ALA was protective for IS but AA was the opposite. LA, EPA, DHA, and DPA had no effects on IS.

Keywords: Blood pressure, Ischemic stroke, Lipids, Mendelian randomization, Omega-3 fatty acids, Omega-6 fatty acids

Omega-6 and Omega-3 Metabolic Pathways Affecting Inflammation

Nutrition Journal

RESEARCH

Open Access

Check for updates

Roles for circulating polyunsaturated fatty acids in ischemic stroke and modifiable factors: a Mendelian randomization study

Tonghui Yuan^{1,2}, Shucheng Si^{1,2}, Yunxia Li^{1,2}, Wenchao Li^{1,2}, Xiaolu Chen^{1,2}, Congcong Liu^{1,2}, Jiqing Li^{1,2}, Bojie Wang^{1,2}, Lei Hou^{1,2}, Yanxun Liu^{1,2*} and Fuzhong Xue^{1,2*}

Abstract

Background: Available data about the effects of circulating polyunsaturated fatty acids (PUFAs) on ischemic stroke (IS) and its main risk factors remains limited and conflicting. Therefore, we conducted Mendelian randomization (MR) to assess whether genetically predicted PUFA affected IS, lipids and blood pressure (BP).

Methods: Genetic instruments associated with IS were derived from ISGC Consortium (n = 29,633), with lipids were derived from GLGC(n = 188,577), with BP were derived from Neale Lab(n = 337,000). The inverse-variance weighted method was the main analysis to estimate the effect of exposure on outcome. Sensitivity analyses included principal components analysis, MR-Egger, weighted median, and weighted mode.

Results: Per SD increases in serum α-linolenic acid (ALA) were associated with lower IS risk, with odd ratio (OR) of 0.867(0.782,0.961), arachidonic acid (AA) were associated with higher IS risk (OR: 1.053(1.014,1.094)). Likewise, Per SD increases in ALA were associated with the lower-level low-density lipoprotein cholesterol(LDL-C), high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC) (β :-0.122(-0.144, -0.101), -0.159(-0.182, -0.135), -0.148(-0.171, -0.126), respectively), AA were associated with the higher-level of LDL-C, HDL-C and TC (β :0.045(0.034,0.056), 0.059(0.050,0.067), 0.055(0.046,0.063), respectively). Linoleic acid (LA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA) had little or no association with IS, lipids or BP at Bonferroni-corrected significance. Different analytic methods supported these findings. The intercept test of MR-Egger implied no pleiotropy.

Conclusions: High-level plasma ALA was protective for IS but AA was the opposite. LA, EPA, DHA, and DPA had no effects on IS.

Keywords: Blood pressure, Ischemic stroke, Lipids, Mendelian randomization, Omega-3 fatty acids, Omega-6 fatty acids

Oil	Omega-6 Content	Omega-3 Content
Safflower	75%	0%
Sunflower	65%	0%
Corn	54%	0%
Cottonseed	50%	0%
Sesame	42%	0%
Peanut	32%	0%
Soybean	51%	7%
Canola	20%	9%
Walnut	52%	10%
Flaxseed	14%	57%
Fish*	0%	100%

lmonds	6.0	6.1	3.5	1.1	8.8	0.2	3.4	163
Brazil	4.1	3.5	2.1	4.3	7.0	0.05	5.8	186
Cashew	5.2	8.6	0.9	2.2	6.7	0.2	2.2	157
Peanut 💧	7.0	4.5	2.4	1.9	6.8	0	4.4	159
lazelnut	4.2	4.7	2.7	1.3	12.9	0.24	2.2	178
Macademia	2.2	3.9	2.4	3.4 (16.7	0.06	0.36	204
Pecan	2.6	3.9	2.7	1.8	11.6	0.28	5.8	196
Pistachio	5.8	7.8	2.9	1.6	6.8	0.71	3.7	159
Walnut	4.3	3.9	1.9	1.7	2.5	2.5	10.7	185
Pine	3.8	3.7	1.0	1.4	5.3	0.31	9.4	188
umpkin d	9.3	5.0	1.1	2.4	4.0	0.51	5.8	151
Flax	1.8	8.1	7.6	1.0	2.1	6.3	1.7	150
Chia	4.4	12.3	10.6	0.9	0.6	4.9	1.6	137
Sesame	5.0	6.6	3.3	1.9	5.3	0.11	6.0	160
Sunflower	5.5	5.6	2.4	1.2	5.2	0.21	6.5	164

Omega-3 fish oil supplement? > Trials do not show benefit

Circulation Omega-3 fatty acids American Heart Volume 135, Issue 15, 11 April 2017; Pages e867-e884 https://doi.org/10.1161/CIR.000000000000482 The three main omega-3 fatty acids CLINICAL STATEMENTS AND GUIDELINES Omega-3 Polyunsaturated Fatty Acid (Fish Oil) ALA Docosahexaenoic acid Alpha-linolenic acid Supplementation and the Prevention of Clinical Cardiovascular Disease Essential Long-chain fatty acids fatty acid A Science Advisory From the American Heart Association ALA is found in plant These are found in oily fish, such as sardines, salmon, trout and mackerel. foods such as David S. Siscovick, MD, MPH, FAHA, Chair, Thomas A. Barringer, MD, FAHA, Amanda M. · The amount of omega-3 in fish varies between flaxseeds, soybean, Fretts, PhD, MPH, Jason H.Y. Wu, PhD, MSc, FAHA, Alice H. Lichtenstein, DSc, FAHA, chia seeds, walnuts, species of fish and whether they are farmed or fresh Rebecca B. Costello, PhD, FAHA, Penny M. Kris-Etherton, PhD, RD, FAHA, Terry A. pumpkin seeds and fish. Jacobson, MD, FAHA, Mary B. Engler, PhD, RN, MS, FAHA, Heather M. Alger, PhD, canola oil. Oily fish like fresh tuna, fresh or tinned salmon, Lawrence J. Appel, MD, MPH, FAHA, Dariush Mozaffarian, MD, DrPH, FAHA, and On sardines, pilchards and mackerel are higher in behalf of the American Heart Association Nutrition Committee of the Council on omega-3. Lifestyle and Cardiometabolic Health; Council on Epidemiology and Prevention; White fish and sea food (oysters, eel and prawns) Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke have a lower omega-3 content. Nursing; and Council on Clinical Cardiology

CONCLUSIONS

"We do <u>not</u> recommend treatment to prevent incident stroke among patients at high CVD risk and recurrent AF"

Cochrane Database of Systematic Reviews

Reduction in saturated fat intake for cardiovascular disease (Review)

Hooper et al. 2020 doi:10.1002/14651858.CD011737.pub2

Hooper L, Martin N, Jimoh OF, Kirk C, Foster E, Abdelhamid AS

Analysis 2.35. Comparison 2: SFA reduction vs usual diet - secondary health events, Outcome 35: STROKE

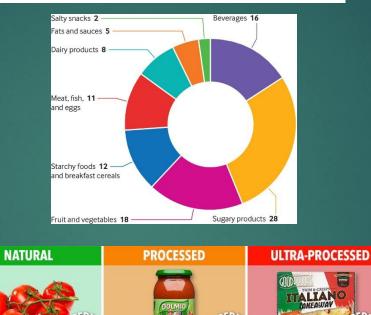
	Lower	SFA	Higher	SFA		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Ley 2004	1	88	5	88	2.0%	0.20 [0.02 , 1.68]	
MRC 1968	2	199	0	194	1.0%	4.88 [0.24, 100.89]	
Moy 2001	1	117	1	118	1.2%	1.01 [0.06 , 15.93]	
Oslo Diet-Heart 1966	2	206	1	206	1.6%	2.00 [0.18, 21.89]	.
STARS 1992	0	27	1	28	0.9%	0.35 [0.01, 8.12]	.
Veterans Admin 1969	13	424	22	422	16.4%	0.59 [0.30, 1.15]	
WHI 2006 (1)	435	19541	634	29294	76.9%	1.03 [0.91 , 1.16]	•
Total (95% CI)		20602		30350	100.0%	0.92 [0.68 , 1.25]	
Total events:	454		664				Ĭ
Heterogeneity: Tau ² = 0.0	03; $Chi^2 = 6.5$	9, $df = 6$ (P = 0.36; I	$2^2 = 9\%$			0.01 0.1 1 10 100
Test for overall effect: Z	= 0.52 (P = 0)	.60)	F	avours lower SFA Favours higher SFA			
Test for subgroup different	nces: Not app	olicable					

7 RCTs, 50,952 participants, 1118 people with stroke No effect of SFA reduction vs. usual diet on any stroke, RR 0.92, 95% CI 0.68 to 1.25

Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Santé)

RASPBERRIES

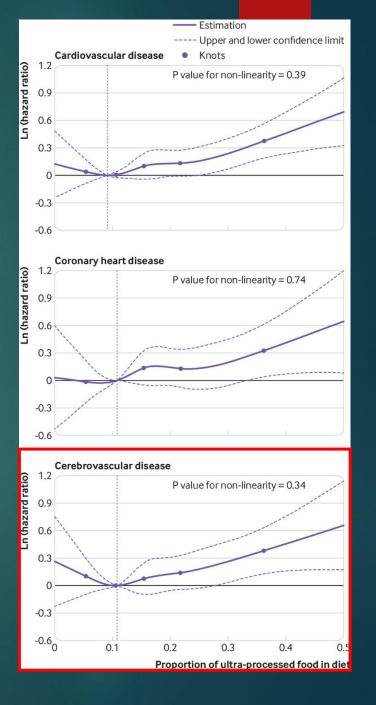
CHICKEN


BMJ 2019 ; 365 doi: https://doi.org/10.1136/bmj.l1451 (Published 29 May 2019) Cite this as: *BMJ* 2019;365:l1451

Prospective observation of 105K participants for 5.2 years

Intake of ultra processed foods significantly increased risk of:

- Cardiovascular D: HR 1.12
- Coronary HD: HR 1.13
- Cerebrovascular D: HR 1.11


Results remained statistically significant after adjustment for several markers of the nutritional quality of the diet (saturated fatty acids, sodium and sugar intakes, dietary fibre, or a healthy dietary pattern

6

ROAST

25

The Pillars of Lifestyle Medicine

Healthy Eating

Lifestyle Medicine supports people to reduce consumption of ultra-processed foods by teaching the knowledge and skills required to follow healthier eating patterns of people's own choosing.

Mental Wellbeing

Lifestyle medicine teaches proven techniques to reduce stress and help people with relaxation. Practitioners support people to find purpose in life and improve health through connection with nature.

Healthy Relationships

Lifestyle medicine supports people to develop and sustain healthy and meaningful relationships and increase social connection to reduce stress and promote both physical and mental health.

Physical Activity

Lifestyle Medicine supports people to choose ways they could incorporate more physical activity in their lives, as well as reducing time spent sitting down.

Minimising Harmful Substances

Lifestyle Medicine supports people to stop smoking, reduce excessive alcohol consumption, avoid addictive substances and behaviours such as gambling or harmfully excessive internet or social media use.

Sleep

Lifestyle Medicine supports people to achieve good quality sleep and avoid behaviours which can impair sleep quality.

https://bslm.org.uk

Conclusion

- Nutrition is important in reducing stroke risk
- **Follow a Mediterranean and DASH style diets**
- Don't calorie count extra virgin olive oil & nuts
- Focus on high potassium food / omega-3 oils
- Eat more white meat / polyphenol-rich foods
- **Eggs (1/d) are good!**

- Avoid high salt & glycaemic index foods / trans fats
- Eat less red meat / omega-6 oils / ultra processed foods
- Nutritional optimization as part of a comprehensive lifestyle modification plan
- It's never too late to develop a healthy eating habit & lifestyle

()